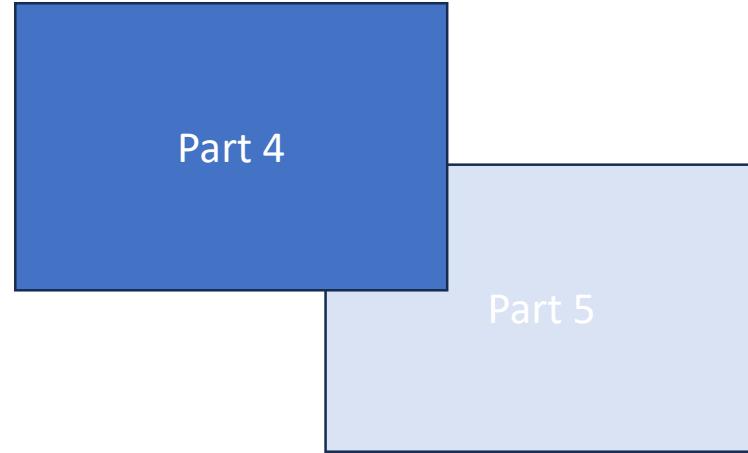


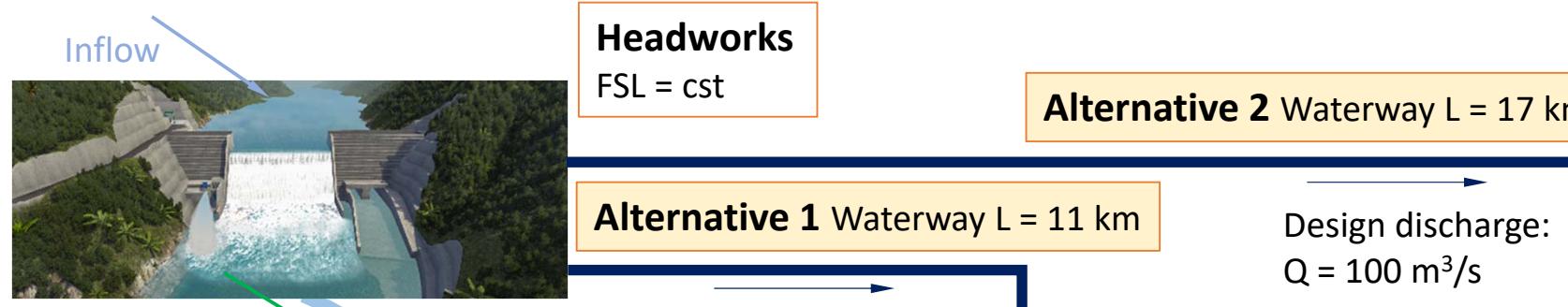
Water Resources Engineering and Management

(CIVIL-466, A.Y. 2024-2025)

5 ETCS, Master course

P. Perona, M. Leite-Ribeiro and M.P. Bieri


Junjia Kang, Giulio Calvani


Practical Work : Case study hydropower
optimal water allocation and financial study

Content and Goals

- Define **cashflows** of a hydropower project
- Develop **discounted cashflow model**
- Perform **economic analysis** by defining corresponding IRR and NPV
- Perform **financial analysis** and assess project from investors' and lenders' point of view

Case Study

Alternative 1 Waterway L = 11 km

Design discharge:
 $Q = 100 \text{ m}^3/\text{s}$

Design discharge:
 $Q = 100 \text{ m}^3/\text{s}$

Alternative 1
Powerhouse
Head $H_{gross} = 350 \text{ m}$

Alternative 2
Powerhouse
Head $H_{gross} = 500 \text{ m}$

Irrigation needs

Case Study – Inflow

Inflow to Headworks:

Month	Inflow Q_m [m ³ /s]
January	75
February	55
March	52
April	36
May	45
June	75
July	75
August	120
September	143
October	156
November	146
December	100

Assumptions:

Ecological flow: 10% of inflow

Irrigation needs:

- Dry season (January to July): 30% of inflow
- Wet season: 10% of inflow

Case Study – Operation Conditions

Assumptions:

<i>Design discharge:</i>	100 m ³ /s
<i>Gross head:</i>	H_{gross}
• Alternative 1:	350 m
• Alternative 2:	500 m
<i>Head losses (const.):</i>	$dH = 5\% H_{gross}$
<i>Net head:</i>	$H_{net} = H_{gross} - dH$
<i>Planned/unplanned outages:</i>	5%
<i>Efficiency:</i>	90%

Electricity tariff

Base Case Scenario:

- Peak: 8h/day US Sc 6 /kWh
- Off-peak: 16h/day US Sc 3 /kWh

High Demand Scenario:

- Peak: 8h/day US Sc 10 /kWh
- Off-peak: 16h/day US Sc 5 /kWh

Concession period: 20 years

Operation and Maintenance (OPEX): 2% of CAPEX/year

Case Study – Cost Estimate (CAPEX)

Assumptions:

Civil Works:

- Dam (incl. spillway, bottom outlet, power intake, river diversion): USD 120 million
- Waterway: USD 20 million/km
- Powerhouse: 30% E&M cost

Construction time:

3 years

Equipment:

- Electromechanical (E&M): USD 0.4 million/MW
- Hydromechanical (HM): USD 50 million

Miscellaneous:

- Contingencies, unmeasured items, indirect cost: 30% of cost

Case Study – Economic Assessment

Assumptions:

Cost disbursement:

- Start of year 1: 10%
- Mid of year 1: 25%
- Mid of year 2: 30%
- Mid of year 3: 35%

Discount rate: 6%

Construction time: 3 years

Project tasks (Week12 – 12/05/2025)

Your tasks today:

Use spreadsheet: WREM-project_4_for students.xlsx

Exercice 4.1:

Define construction cost for both alternatives.

Exercice 4.2:

Define mean annual revenue for both alternatives.

Exercice 4.3A:

Define the project cashflows and prepare the discounted cashflow model.

Exercice 4.3B:

Define economic IRR and NPV for both alternatives.

Exercice 4.3C:

Compare the two alternatives in regard of IRR and NPV and discuss their economic attractiveness.